
AD-A273 811
_./

PL-TR-93-2116

IRMA: A PROGRAM FOR THREE-DIMENSIONAL
COLOR DISPLAY OF DATA

M. F. Tautz

VDTIC
r ELECT-1

Radex, Inc. so I

Three Preston Court
Bedford, MA 01730

May 30, 1993

Scientific Report No. 13

Approved for public release; distribution unlimited

PHILLIPS LABORATORY
Directorate of Geophysics
AIR FORCE MATERIEL COMMAND

4 4HANSCOM AIR FORCE BASE, MA 01731-3010

93-29093 93 11 26 146

"This technical report has been reviewed and is approved for publication"

EDWARD C. ROBINSON
Contract Manager
Data Analysis Division

7

RýERT E."6•INERNE¥, Diree t or
Data Analysis Division /

This report has been reviewed by the ESD Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies fr(a the Defense Technical
Information Center. All others should apply to the National Technical
Information Service.

If your address has changed, or if you wish to be removed from the mailing
list, or if the addressee is no longer employed by your organization, please
notify PL/TSI, 29 Randolph Road, Hanscom AFB, MA 01731-3010. This will
assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document requires that it be returned.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

COLOR PAGES WHICH DO NOT

REPRODUCE LEGIBLY ON BLACK

AND WHITE MICROFICHE.

Form Approved

REPORT DOCUMENTATION PAGE oMB Nor Ap0roo-

Publc ri~f'g burden for this collection of information is estimated to &.*rage 1 hour oer vw~r-A. rmc~uding the time lot -eview-; rnslr..cto1. Waarcr¶; exst.ng rata souwcei
giwheg 4 mEtarnnl the data mode d ,cornpletig and revewing the ccole.on of nfO.mat,on Ste."d cOmments regarcr•g Utohisbrien evmate or any cter 4i*ed, of vhO
codmm onof unfora&tuon. n g Iona or rt fdng this burden. .O Washr.iOn 140aoauaflem, $erW.ces. Darecorate Or lnforfmaen Ooe,&tons and Re-ort. 12 5. Jefferion
Oe"r "Puhway. StC ¶204. Arlinton. nr2,02.43W ad to the Office Of Maragemtent And guafgel. Wap er.ou ResupOn P eC1 (. 704-0106). Wainmton. X 20503.

1. AGENCY USE ONLY (Leave blank) 1 2. REPORT DATE 3.REPORT TYPE AND DATES COVERED
4.30 May 1993A T Scientific Rport No. 13 N

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

IRMA. A Program for Three-Dimensional Color Display of Data PE 62101F

PR 7659 TA05 WUAB
6. AUTHOR(S)

M. F. Tautz
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

RA.DEX, Inc.
Three Preston Court
Bedford, MA 01730 X]R-93051

9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING

Phillips Laboratory AGENCY REPORT NUMBER

29 Randolph Road
Hanscom AFB, MA 01731-3010 PL-TR-93-2116

Contract Manager. Edward C. Robinson/GPD
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION IAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release
Distribution Unlimited

13. ABSTRACT (Maximum 200 words)

This report describes the input, output, and interactive capabilities of the IRMA
plotting program. Actual FORTRAN or C coding is not given. The IRMA program was designed for displaying
data, from spacecraft charging and contamination codes, in three dimensions, and in color. The user interface
features interactive control of viewing position and perspective by keyboard and mouse input. Text ports are
available so that figure captions can be typed directly to the screen. The current graphics state can be saved in a
parameter file for later restoration. The many data visualization options include drawing complex polygon objects,
displaying particle trajectories, creating contour level surfaces, and building random dot plots to represent number
density. Column density images can be obtained by integrating along an arbitrary line of sight Image files can be
written out to create a set of frames depicting the time sequence of events.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Data visualization, 3-D plotter, color plotter, column density, IRMA computer code 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified • Unclassified Unclassified Unlimited

NSN 7540-01-280-5500 Saariwdr :orn 218 (Rev 2-89)
"i'"Oeo by .NS o ZSg-o 8
29.6-1:2

TABLE OF CONTENTS

Section bwg

1.0 INTRODUCTION ... 1

2.0 OVERVIEW OF USER INTERFACE ... 2

3.0 INPUTI/OUTPUT FILES .. 6

4.0 OBSERVER VIEWPOINTS (MODULE 1) 9

5.0 OBJECT TRANSFORMATIONS (MODULE 2) 10

6.0 CREATE AND MANIPULATE OBJECTS (MODULE 3) 12

7.0 CREATE AND MANIPULATE IMAGES (MODULE 4) 13

.0 SCREEN FORMATS (MODULE 5) AND SCREEN DUMPS 15

9.0 COLUMN INTEGRATION ... 17

REFERENCES .. 19

APPENDIX A. COLOR MAPS AND COLOR LEGEND A-1

APPENDIX B. TEXT PORTS ... B-1

APPENDIX C. DATA SCANS ... C-i

APPENDIX D. MULTI-GRIDS .. D-1

APPENDIX E. ZBUFFER .. E-1

APPENDIX F. PROGRAM NOTES .. F-1

APPENDIX G. SAMPLE PLOTS .. G-1

Acoession For

.:'K-:" ;'z' EN•S CT'ED , DTIC TAB

iuannounced 5
Justtfication

By.,

Dlatribution/ _

AvaIleib11it, Codes
jAvell , n/or

Dist. Speciali f'j __

iUst of FIgures

1. The IRMA set up mode configuration. The POLAR micro shuttle model is in the display
window G-2

2. The POLAR code model of the DMSP satellite. The colored coded surfaces represent
surface charging ... G-3

3. The integrated column density for a SOCRATES simulation of a perpendiular bum of the
RCS engines . .. G 4

4. The POLAR code depiction of the plasma sheath around the SPEAR rocket The 'sawtooth'
black and white color map was used to produce the forward light shading. ... G-5

iv

ACKNOWEDGEMENS

The author wishes to thank Dr. David L Cooke for his assistance
and guidance during the course of the work. Many of the key ideas
for structuring and implementing the IRMA code were provided by
Dr. Cooke. The author would like to thank Mr. Thomas Proulx
for programming assistance on the IRMA program during his stay
as a RADEX summer appointment. The author also wishes to
thank Dr. Alireza Setayesh for help with the SOCRATES to
IRMA interface.

v

1.0 INTRODUCTION

The IRMA (IRis MAnipulator) program was developed for presentation and analysis of three
dimensional distributions of physics data obtained from numerical simulations. The program has been
used extensively to help understand and diagnose the complex output from large simulation codes
(POLAR [Lilieg, et at., 1989], SOCRATES [ELgin, 19881 and MACH [Taitz, et L., 1988D operated
by PHL. The IRMA code is currently implemented on a Silicon Graphics IRIS 3030 workstation which
uses the UNIX operating system. A preliminary version has also been brought up on an IRIS INDIGO
minicomputer.

The design considerations for IRMA have stressed ease of use, modularity and flexibility. The prototype
code was configured by merging a number of Silicon Graphics demo programs and hence the graphics
interface is inherently user friendly. The modularity of the program allows the large number of graphics
options to be organized in a convenient and logical fashion. Although the program was written to
handle data from specific codes, we have tried to keep to a general format so that IRMA can be easily
accessed by other programs and the graphics options are flexible enough to satisfy most plotting
requirements.

We list below the main features and capabilities of the IRMA program:

- can read and plot polygon objects

- can read and plot trajectories

- can read and plot 2D image planes (compatible with IRAF program)

- can read scalar functions f(x,yz) of data defined on a discrete x,yz grid

- can create a dot pattern representing the grid nodes at (x,y,z)

- can create contour level surfaces for f(x,y,z) using polygonal elements

- can strip the above contour surfaces along coordinate lines for emphasis

- can create planar slices through f(xy,z) and color code them

- can create specide plots representing the local magnitude of f(xy,z)

- can set up an arbitrary observer viewpoint with arbitrary object orientation

- can calculate integrated column densities for an arbitrary line of sight

- accepts both ascii and binary node file input and MSIO files

- can save parameter files specifying the current graphics state for easy restoration and
continuation at a later date

has special window modes for viewing the dipping planes, for comparing objects side by side and
a display mode suitable for hard copy output

can do a screen dump to an image file which can be later pasted to the screen and manipulated
with the window manager

has a flexible color legend and a choice of several color and grey maps

has text ports for insertion of captions and labeling of units and a primitive text editor for
modifying captions

has data scanning capabilities for inspecting data at each node

has a multi-grid option allowing for nested grid data

has a zbuffer toggle for shadowing of hidden surfaces

has an extensive set of help files describing each graphics option

In the following sections we describe these features in more detail. Section 2.0 gives an overview of the
basic user interface. The next sections (3.0 to 8.0) summarize the five program modules. Section 9.0
outlines the column density algorithm. A set of appendixes describes other features of separate interest.

2.0 THE USER INTERFACE

This section contains an overview of the basic IRMA interface: how to enter the program, how to
navigate, how to set things and how to exit.

To execute IRMA you must first type 'mex' (not needed on the INDIGO) to turn on the SI window
manager program and then type 'irma' (if you are not in the directory containing the executable file irma,
you must set the path to the executable). The IRMA program then enters the input/output (10) module.
This is the place to read in any files that you wish to plot. Choose the menu option #1 to enter the
graphics modules. The first time into graphics, you should be in module 3, in the set up mode. The
various modules and modes available and the mechanics of mouse/keyboard input are described below.

MOUSE INPUT

The mouse allows continuous change of the graphics parameters which appear in the status window
(upper left window in setup mode). Note that the mouse selection of a pop up menu option is a two
step action: pressing down the mouse shows the menu, while letting it up selects the highlighted menu
option.

2

Each graphics module has its own menu of options and functions. Some menu options generate
sub-menus, but one should never have to go more than one layer deep to reach something.

Although the pop up menus are different for each module, there are a number of common entries, which
are listed below (the * stands for any of the five modules):

/*/toggles - contains toggles and switches that can be accessed from any module

i*/info - used to generate information of various sorts. Print normally appears
lower left window (in set up mode).

/*/reset_parameters - enables one to reset all graphics parameters for the current module to

f•t original (on entering graphics) settings.

/*/modules - navigates between the graphics modules.

/*/modes - switches between the various graphics modes.

/*/return - allows one to return to the 10 module or to quit program.

There are two ways to exit from the graphics modules. If you select /*/return/quit then the program exits
completely. All graphics parameters are lost. If you select /*/return, however, the code returns back to
the 10 module (note that to activate the 10 module screen on the IRIS 3030, you must first attach the
window with the mouse). From there you can save your graphics parameters (option #11) or read in
more data and go back in to graphics. You can also exit the program directly from the 1O module by
selecting option #-1.

The procedure to set a graphics function parameter with the slider bar interface is given below.

1) To select a graphics function press the right mouse down to pop up a graphics menu, move
the highlight bar to your choice, and then let the mouse up to toggle on the desired function.
The function name and argument list should appear in the status window (upper left window in
set up mode)

2) Use the left mouse to move the cursor and pick a variable from the argument list in the status
window. This is done by placing the cursor over a number and pressing the mouse button down
and up (the chosen variable will be highlighted)

3) Use the left mouse and cursor to pick and 'drag' the slider bar to the desired value. If the
value is off scale, the slider bar will wrap around until it reaches the correct value.

3

KEYBOARD INPUT

The keyboard allows one to input discrete values. Do steps 1) and 2) above to select the variable that
is to be changed. Instead of step 3) above type 'e' for enter. An enter prompt should appear in the
slider bar window. Type in the desired number and press return to set the variable. The argument list
and the slider bar will be updated. If you get a 'bad number' message, hit 'escape' to clear and enter the
number again. Blank spaces are not allowed. 'E-format' is accepted.

Arguments can also be picked from the keyboard (step 2) above). First enter an 'o' to open a default
argument (it will be highlighted). One can then step between args using the 'T' and 'r' keys (left and
right). For those functions with two argument lines, one can jump to a new argument line with keys 'f
(forward or down) or 'b' (backward or up).

The keyboard is always ready to accept commands, except when in text input mode (see Appendix B)
or during number entry mode (see above). Pressing 'escape' will always restore the keyboard to
command mode.

Hit /*mfo/keyboard to see a list what commands are available. There is some redundancy between the
mouse menu options and the keyboard commands. For example, one can change modules from the
keyboard using the number keys. Or one can change modes with 's', 'd', 'c', and 'x' keys (standing for
set up, display, clipping and compare modes).

MODULES and MODES

The five modules implementing the graphics options are listed below:

1) module 1 - sets the observers viewpoint, using SI graphics functions ortho, window, persp,
polarview and lookat.

2) module 2 - uses SI graphics routines scale, translate, and rotate to manipulate objects.
Special objects can be singled out for independent transformation.

3) module 3 - creates graphical objects and modifies them. Manages the object list.

4) module 4 - creates images using the column density integration or loads in an IRAF image.
The images can be manipulated and added to the object list.

5) module 5 - formatting control of various windows.

These graphics modules are described in more detail in Sections 4.0 to &0 of this report

Graphics modes refer to user selectable window configurations. There are four modes currently available:

4

1) Set up mode - This is the 'working' mode. Th% status and slider bar windows appear at the
upper left. The main display window is at th, right User controlled information appears in the
box at the lower left. The box in the upper right corner indicates the current module and the
state of the keyboard.

2) Display mode - This mode can be used when an acceptable view has been obtained and
perhaps a hard copy is desired. Only the display window appears, with all the set up information
stripped away. The zbuffer or depth cueing options only work in display mode (this restriction
applies only on IRIS 3030).

3) Clipping mode - This view shows the placement of the clipping planes, corresponding to the
current main window view. For convenience, a compressed view of the display window appears
at the upper right. This mode can be used to clarify the clipping plane configuration.

4) Compare mode - Allows one to show selected (from the object list) objects side by side for
direct comparison. Uses /m3/selectobjects/windowl or 2 to fll the two windows.

The current color map can be displayed (in set up mode) by going to module 3 and toggling
/m3/colormap/show map. If the color map is bad (e.g. after a system crash) it can be restored to the
standard rainbow map by selecting /m3/color-map/normal map.

There exists an irmafiles/help subdirectory with detailed information on most of the IRMA options and
functions. This directory contains many small files. The names of the help files are chosen to be similar
to the functions they describe, usually corresponding to the pop up menu entry string. Use Unix
commands Is and/or grep to find the help you need.

5

30 INPUT/OUTPUT FILES (10 MODULE)

On entering the IRMA program the input/output (10) module menu appears. This menu is used mainly
to read and write files. There are presently six types of files supported:

1) surface polygon file - contains a list of color coded polygons describing some object e.g. the
space shuttle. Format is compatible with POLAR/SHONTL/NPLDIS output.

2) ascii/binary node data files - A complete set of tools exist for ascii read/write and binary
read/write. They are compatible with MACH and SOCRATES output.

3) MSIO node data files - these are 'indexed sequential binary' files, modeled on the CYBER
mass storage routines.

4) trajectory files - contains particle trajectory step data. The format is compatible with
POLAR/SHONTLiNPLDIS output.

5) IRAF image files - two dimensional images written by the IRAF program. These files can
also be written by MACH.

6) graphics parameter files - allows one to save the graphics parameters from an IRMA
ses-ic-i

Column density images can also be written out in ascii node file format (2 above). These files can be
read by an auxiliary code and converted to SUATEK or MACHCON format for black and white contour
plots.

When reading a file, IRMA will ask for the file name. If the file is not in the current directory, this
name should include the path. After the read in is completed, IRMA always prints a little information
to help verify that the file was read correctly. This is usually the minimum and maximum from a scan
of the data that was read.

Polygon files:

The polygon file is ascii and has a very simple format. It consists of a list of polygons. Each polygon
is specified by a card giving the number of vertices and the value at each vertex, followed by one card
for each vertex with its x,y,z coordinates. For example, an equilateral triangle lying in the x-y plane, with
node values -2.5, 0.0, 2.5 would be given by the cards:

3 -2.5 0. 2.5 - number of vertices and values at each one
-1. 0. 0. = x,yz of vertex 1
1. 0. 0. = x,y of vertex 2
0.4-. 0. = x,y,z of vertex 3

6

Polygon vertices should always be drawn in the counter clockwise direction, as seen from positive z. If
the /m3imodify.objects/solid toggle is on, the polygon will be drawn in one color using the value of the
first vertex. If the /m3/modify.objects/gouraud option is on, the polygon will be gouraud shaded i.e. the
colors will be linearly ramped between the vertices. Polygon files are read in by subroutine readob.f.

Node data files:

The node data files also have a simple format. It consists of some header lines and then columns of data
as indicated below:

N - nLber of input parameters (zero is expected)
M - number of variables in this file
...followed by one caption string card for each of the M variables
NX NY NZ - number of grid nodes in x,y and z directions
...followed by x coordinates list
...followed by y coordinates list
...followed by z coordinates list
valuel value2 value3 ... = up to M columns of data
...more columns of data

For the columns of data the x index runs fastest, then y, then z. The value of N can be set non-zero to
maintain compatibility with old files, but currently no input parameters are passed to IRMA. Node files
are read in by subroutine readab.f.

MSIO files:

MSIO files carry the same data as the node data files above. The advantages of using MSIO files are:

a) they are binary, hence smaller (by -1/3)
b) they are quicker to read in
c) they have a 'key' structure allowing sub-file organization
d) they support multi-grid data
e) they are compatible across different machines

A disadvantage of the MSIO files is that there is considerable set up work needed to use them i.e. the
routines to create these files must be constructed. A set of prototype routines to be used for developing
this capability are located in a IRMA subdirectory called irmafiles/mstools. MSIO files are read in by
subroutine readin.t

Trajectory files:

The trajectory files contains a sequence of trajectory step data of the form:

x y z color = x,y~z coordinates and color index
...followed by more cards of same form

7

The color variable is a function of the track coordinates which can be used to describe local conditions,
e.g., the electrostatic potential at each time step. The trajectory is plotted in increments of two. That
is, a straight line is drawn from point 1 to point 2, from point 3 to 4, from point 5 to 6, etc. No line is
drawn between point 2 and 3, 4 and 5, etc. This is the SCUBED format and is designed to follow
multiple independent tracks. If a single continuous track is desired the connecting points must be equal
i.e point 2 equals point 3, point 4 equals 5 and so on. When drawing the track, ERMA adds a small
white line segment on the forward end to indicate the direction of the track. Trajectory files are read
in by subroutine nrtraj.f.

IRAF image files:

"The IRAF image files contain f(xy) data written in FITS format. There is a set of header cards and then
a linear string of data values. Consult the IRAF documentation for details [NOAO, 19871.

While reading these files, IRMA will prompt for information. For IRAF files this is the number of
columns of data and the format, which can be read off the header cards. For files written by MACH,
one can also input information on the image boundaries. IRAF image files are read in by subroutine
readim.t

Graphics parameter files:

The graphics parameter files are written by IRMA from the 10 module. The purpose of these files is
to save the final graphics parameters from an IRMA session. When you return at a later date you can
read this file and restore the graphics parameters to the original settings. Reading a parameter file over
writes any existing parameter settings.

On the INDIGO version of IRMA, we have added an option to read the SOCRATES binary files
directly. This feature bypasses the need to transfer data by means of intermediate files. By choosing the
10 module option #11, one enters a sub-menu of IRMA and interactively selects the desired variables
from the SOCRATES restart file. Plots can be made and then another variable selected. This provides
a fast and convenient way to interrogate a SOCRATES run.

8

4.0 OBSERVER VIEWPOINTS (MODULE 1)

Module 1 sets the observers viewpoint, using SI graphics functions ortho, window, persp, polarview and
lookat.

For a full description of the above SI graphics functions see their documentation. Briefly, the functions
ortho, window and persp define the observers view by means of clipping planes. For ortho, which is the
non-perspective case, there are six orthogonal clipping planes forming a parallelepiped which frames the
view. For the perspective views, window and persp, the clipping planes form a viewing pyramid with the
eye at the vertex. The window function is the same as persp, but allows more flexibility in setting the
clipping planes.

To activate these transformations select menu option /ml/ortho/window/persp and choose the desired
function. In order to facilitate usage of these graphics functions, we have defined some combination
moves. These allow one to tie together arguments in the argument list in such a way as to efficiently
produce effects that are needed frequently. These combinations are listed below:.

l+r - move left and right clipping planes together (with constant differece) to
produce a horizontal shift

b+t - move bottom and top clipping planes together to produce a vertical shift

n+f - move near and far clipping planes together to shift the clipping span

n-f = move near and far clipping planes in opposition to expand or narrow the
clipping span

zoom = move the clipping planes in such a way as to produce a zoom. This is done
differently for each function:

ortho - all six clipping planes are moved in opposition
window - the front window sides are moved in opposition
persp - not needed (the fov variable does a zoom)

When one chooses one of these combinations, a message appears to the right in the status window
indicating which variable to pick in order to move the arguments together.

There are also some conversion options to translate one view to another e.g. use ortho/window to go
from window to ortho. These will only give an approximate correspondence, since exact matching is not
always possible.

The polarview and lookat functions position the observers eye at a specified location. The polarview
function puts the observer on the surface of a sphere, looking towards the origin. The lookat function
puts the eye at an arbitrary position and with an arbitrary line of sight. It is thus more general than
polarview. However, polarview has been found adequate for most purposes and lookat has only been
infrequently used. To modify these functions choose menu option /ml/polarview/lookat.

9

There are menu options to look directly down the x, y and z axis. These work by changing the angle
arguments to polarview. They can be used to quickly look at an object from all sides. These options
over write the current polarview parameters.

The view clipping menu option brings up a sub-menu that can be used to modify the two views of the

dipping mode. One can toggle between perspective and orthogonal views, zoom, rotate and change the
observer distance.

Typically one would like to frame the grid data as closely as possible, for example when calculating
column densities. This can be done by first creating the grid nodes object and then using the dipping
mode and the module 1 graphics functions to set the planes at the grid boundaries.

5.0 OBJECT TRANSFORMATIONS (MODULE 2)

Module 2 uses SI graphics routines scale, translate, and rotate to manipulate objects. One can think of
these transformations as active (observer fixed, object moves) as opposed to the module 1 viewing options
which can be thought of as passive (observer moves, object fixed). If one just wants to inspect an object,
this module can be a little easier to use e.g. the rotations are done directly around each of the three
coordinate axis rather than in terms of the more complicated azimuth, inclination and twist angles. The
total viewing matrix will be the product of the observer transformations of module 1 and the object
transformations (if any) of module 2.

The translate, rotate and scale transformations work as described by SI:

/m2/translate: moves objects parallel to the x, y or z axis

/m2/rotate: rotates objects around the x, y or z axis (units are degrees/10)

/m2/scale: shrinks, expands or mirrors objects along each of the x, y or z axis

In IRMA we have defined an additional function, zoom, which scales objects equally in the x,y,z
directions. One can combine these transformations to create more complex transformations. The order
is important. Rotates are done before translates in the order x, then y, then z.

The main complication in module 2 is the definition of special objects. This allows one to treat certain
objets differently than others with respect to rotate, translate and scaling. This feature can be used to
make adjustments for input coming from different programs. For example, if a polygon model of the
space shuttle was created by one program, say POLAR, for use with the data from another program, say
SOCRATES, it might be necessary to introduce a scale factor, translation, and/or a rotation to properly
place and orient the POLAR shuttle in the SOCRATES grid space. We can do this by defining the
shuttle to be special; it can then be transformed independently of other objects.

10

The two IRMA functions that handle special objects are:

/m2/selectspecial - This is a switch that toggles on/off the special object trnfrmations
for selected objects. It has no effect if a special transformation has not
previously been defined for the object. The list option summarizes the
current status.

/m2lmodify.special - This switch must be turned on before an a selected object can be
modified. The rotate, translate and/or scaling tran tio can then
be set. The status window should say which object is ready for change,
and give a summary of all the argument values. The arguments cannot
be changed at this point. To do this one must pick out the appropriate
transformation from the menu options and set it in the normal way.

By default, the transformations of module 2 apply to all graphical objects in the object list and to make
a certain object special one would do the following-

a) use modify.special to enable the object as special
c) choose a transformation, say rotate, and set the angles

If one uses /m2/select specialobjects to toggle off the special status, the object will revert to normal
status. Select /m2/modify.special/none to reset module 2 so that any subsequent tanformations will
apply to all objects.

"The action of the module 2 transformations can be observed by using the IRMA clipping mode. View
any object (e.g. the x~y,z axis) and vary the translate, rotate, or scale parameters. The object will respond
but the clipping planes will remain fixed. This is in contrast to the viewing transformations of module
1, which change the clipping planes, with the object held fixed.

The special object settings are written to the IRMA parameter file so they can be recovered in
subsequent runs.

Note that the /toggles/socrates switch uses the special objects option. This switch sets the graphics
parameters up for a reasonable first look at SOCRATES data. It assumes that the shuttle object has
been read in from the 10 module and it makes this object special. This can lead to some confusion if
you toggle socrates on, without reading in the shuttle model.

11

6.0 CREATE AND MANIPULATE OBJECTS (MODULE 3)

Module 3 is used to create graphical objects, to modify them, and to manage the object list. It also can
be used to manage the grid list if more than one grid is read in. The color map options are also in this
module.

The module builds graphical objects of various types, based on grid node data that has been previously
read in. The module 3 pop up menu options that actually create objects are marked with an asterisL
Each object that is created is automatically placed in the object list. A list of the currently available
objects is given below.

CONTOURS - these are 2D surfaces of constant value. Use the /m3set-levels function to choose up
to three surface levels per object. The algorithm builds a polynomial object by finding
the intersections of the specified level value with the volume cell boundary lines and then
constructing triangles connecting to the intersections and to a common cell midpoint.

SLICES - these are 2D surfaces on a planar cut through the data. Use the /m3/setnodes
function to choose the i,j,k grid nodes. For example, selecting j - 8 would specify the
plane defined by y(8) = constant. The default slice format is the wire frame. Use
/m3/modify.objects/gouraud to produce a color coded slice.

CLOUDS - these are speclde plots with random pixel dot density representing the data magnitude
(assumed > 0). For example, this has been used to depict particle number density
distributions. The number of dots put in volume cell i is n, - c*f(x,y,z)*dV where c is
a normalization constant set so that E ni - n, where n is user input (default - 10000).
Use /m3/set cloud to modify the cloud parameters.

GRIDS - this is a dot pattern representing the grid nodes. The options are a single white dot
giving the node location or a colored dot (actually a duster of 7 closely spaced dots)
coded according to the data value at the node. Use /m3/modify..bjects/color_orpwhite
to switch between these two options.

Once an object has been placed in the object list, it may be toggled on and off using /m3/selectobjects.
One can remove the last object (only) from the list using /m3/delete lastobject. There are a number
of other options that may be used to manipulate objects selectively i.e. governed by selectobjects, which
are described below.

/m3/modify.objects - change from wire frame to solid, gouraud shade and other options. An
automatic redraw is done.

/m3/keep/cut - allows one to remove a selected volume region from the polygon draw loop.
One can remove all polygons outside a specified region (a keep) or inside a
region (a cut).

12

/m3strip - allows one to redraw a polygon surface contour using only the planar
projection in one of the coordinate directions. These stripped polygons are
drawn with double width lines to enhance visibility. The stripped objects do not
appear in the object list, they have their own sub-menu for selecting on and of.

/m3/redraw - Sometimes it is desirable to redraw a polygon object. This might be done after
a color mapping change, after turning on a keep or cut or for some other
reason.

/m3/center - Sometimes it is easier to manipulate an object if it is centered with respect to
the origin. This switch enables one to center and un-center selected objects.
The centering transformation is based on the first object that was read in by the
10 module.

The /m3/selectjgrid option allows one to pick out individual grids for display and analysis. Each node
data set that is read in, goes into a separate grid (they may be identical). So switching grids enables one
to choose between different data sets. The /m3/selectgrid option can also be used in combination with
the nesting function to treat multi-grid input (see Appendix D). The nesting function applies to all
grids that are selected on. It partitions the volume space in such a way that any volume element is
covered only by the highest imbedded grid. If toggled on, the nesting function is used in any subsequent
object creations.

The /m3/lin_log switch allows one to convert the node data to logl0. This may still have some glitches.

The /m3/color.map option allows one to control the color map and the color legend (see Appendix A).

7.0 CREATE AND MANIPULATE IMAGES (MODULE 4)

Module 4 enables one to handle images. Images differ from objects in two main ways.

a) they are two dimensional planes holding projected image data
b) they are drawn on the back dipping planes, using the current view parameters

Images can be promoted to objects in the object list (using the /m4fimage_toobject option). But images
are generally more transitory than objects i.e. if the observer view is changed, then the image will no
longer be lined up on the back dipping plane, and a new image should probably be created.

The two main image building options are:

/m4/createcolumns - This enables one to create column density images by integrating through the
input grid node data. See Section 9.0 for column density details.

/m4/load_IRAF - Any IRAF image file that was read inf rom the 10 module can be loaded in
here.

13

When a new image is created, it overwrites any previous one, so that there is only one current image.

The resolution fines defining a column image may be viewed using the /m4 _magines option. Each
image line is then surrounded by a colored coded box. The color index is based on the column density
value for a ray going through the center of the box. There are also options for displaying solid or
gouraud shaded boxes.

The [RAF images can be modified using the options in set -RAF. The default resolution is that of the
input data file, but one can also change it (with /m4/setRAF) so that the column density resolution
setting is used instead, in which case one gets interpolated data values. One can also position the image
with respect to arbitrary boundary limits (one must specify the true image boundaries at read in time).
For example, the image files written by MACH for the velocity space distribution function, have differing
angle boundaries, which can be lined up with respect to a common range say, 0 to 180 degrees. T'ta and
numbers can be printed to make the boundaries dearer.

The color legend for images is separate from that for objects. It will change automatically from the
object legend to the image legend if one builds column densities or loads in an IRAF image. One can
use /m4/imagejlegend to choose one of two scale modes which are:

1) CALC - The natural scale. Here the min and max are calculated by a scan of the
image data values.

2) SET - An imposed scale. Here one sets the min and max with the mouse.

One would typically use CALC to first generate the limits. Then SET might be used to round off the
end points or to set a common scale for subsequent images. Any data that falls off the end of the scale
retains the color of the end point.

The units for the image legend are arbitrary. They can be modified for column density images (see
Section 9.0). Press key 'u' for a display of the current units above the legend.

If you have more than one IRAF image to view, read in the first one and go into graphics, create it and
put it into the object list using /m4/image_toobject. Then return to the 10 module, read in the next
image and go back to graphics. Any number of images can be assembled this way.

Two images may be viewed side by side using the compare mode. The procedure for setting up this view
is given below-

1) pick the compare mode to view the two windows

2) create the first image and use /m4/imageto_objects to place it in the object list. Use
/m4/selectobjects/window-l to specify that this object is to appear in the left window. Then
select this object off.

3) create the second image. You don't have to make this image into an object and specify
window 2 (although that would work) because that is where it will go by default.

14

Note that if an object and an image are both sent to the display window, the object will have precedence
over the image. Select all objects off to reveal the image. The current image (the last one created) can
be toggled separately using /m4/image..on/off.

8.0 SCREEN FORMATS (MODULE 5) AND SCREEN DUMPS

Module 5 allows one to change the format of the display window and of the text ports. The main
options are:

/m5/axis - This is the set of orthogonal x~y,z line segments that are normally
drawn at the origin. One can vary the length of the lines and displace
them.

/m5/display - This option enables one to change the size and location of the main
display window. (This must be toggled on with /toggles/modifydisplay
on the INDIGO.)

/m5/text.port - Various options for formatting text in the text port inside of the main
display window.

Imsminfo.Jport - Various options for formatting text in the information port.

/mS/rmfo-box - Various options for drawing an outline box within the information
port.

/m5/title - This displays the caption line that is read in off the node data file.
One can change the position, color and borders.

/m5/gridynits - This allows one to print out the axis length in units of KM. One can
modify the position and color of this caption.

/m5/legend - Allows one to change the position and size of the color legend.

See Appendix B for a description of the available text ports. These must be switched on to see the
effects of modifications.

Once one has an acceptable screen view it is possible to dump it onto an image file which can be picked
up later (post-IRMA) and manipulated with the window manager. There are three screen dump options:

1) /toggles/**screendump - this dumps the entire screen (not available on the INDIGO)

2) /toggles/**displayjdump - this dumps only the image in the display window

15

3) /toggles/**zbuffer andldump - this is the same as the display dump, but must be used
with zbuffered images (see Appendix E)

When a screen dump option is toggled on, there will be a pause of a few seconds, and then some noise
fines will cross the screen on the IRIS 3030, which signals that the dump is complete. A line of print
is written to confirm the dump. The output files will be called framel, frame2 etc. Any existing files
of the same name will be overwritten.

To put an image frame onto the screen, outside of IRMA, use the SI image tool routine 'ipaste'. The
image can then be pushed, popped and moved (but not reshaped) like any other window. Other image
tool routines that are useful are:

clip - allows one to extract a subimage from an existing image
snap - allows one to save an existing image onto an image file
cedit - edit the color map
mag - allows one to scale up a image
movie - shows a sequence of frames

These routines are found in the IRMA subdirectory f/rmafiles/mextools.

We have used IRMA and the image tools on the IRIS 3030 to create a movie to represent the time
sequence of a SOCRATES plume simulation. The steps required to do this are outlined below-

1) run SOCRATES at successive time intervals and write the IRMA input node data files
2) use IRMA to create image frames for integrated column density at sequential time

increments and dump the image frames
3) use the IRMA text port capability to create suitable header frames
4) connect the RGB output of the IRIS to an encoder and the encoder output to a tape

recorder.
5) switch the IRIS signal to NTSC mode (using the SI setmonitor command) and run and

record the movie

Using this procedure, we have created a short movie consisting of about 50 image frames that depict the
time development of a shuttle plume for ram, perpendicular, and wake engine burns.

On the INDIGO, we have used the IRIS SHOWCASE program to generate the header frames.

16

9.0 COLUMN INTEGRATION

In order to calculate emissions from a distribution of molecules in space it is necessary to integrate along
the line of sight to obtain the associated column densities. IRMA has an option to do this calculation
for an arbitraq observer viewpoint. This option has been used in the analysis of SOCRATES simulation
results for space shuttle plumes. The algorithm proceeds as follows:

i) given the current view parameters (either window or ortho), the front dipping plane is
gridded uniformly to form transverse area elements.

2) A ray from the eye to the center of each area element is pushed from the front to back
clipping plane and the integrated sum is accumulated and saved.

3) When all the rays have been integrated, the column density for each area element is
gouraud shaded and then projected onto the back clipping plane.

To activate this calculation, use the /m3/*create columns pop up menu option. One should line up the
observers viewpoint so that the region of data is closely framed by the dipping planes (one can use the
dipping mode to determine this).

Some aspects of the calculation are given below. Let f(x,y,z) represent the source distnibution. Let a,b
denote the transverse coordinates in the front clipping plane and the variable c stand for the distance
along a line of sight through point (ab), between the front and back clipping planes. Then the column
density at (ab) will be given by

d(a,b) = E f(x,yz) dc

where the coordinates x,y,z are determined by the mapping of (a,b,c) onto the grid coordinates (x,y,z):

x = x(a,b,c)
y = y(a,b,c)
z = z(a,b,c)

As c is stepped, the points (x,y,z) do not usually fall right on a grid node, and the algorithm uses
trilinear interpolation in each grid box to assign a data value. If the point (x,y,z) lies outside the grid,
zero is assigned.

In this calculation, the resolution can be varied by setting integers nab and nc such that

da = (a2-al)/nab
db - (b2-bl)/nab
dc = (c2-cl)/nc

17

where 1,2 denote the boundaries set by the clipping planes. The column resolution may be set with the
/m3iset columns menu option (upper limit of 50). For 32 by 32 by 32 resolution, the calculation typically
takes a little over a minute on the IRIS 3030.

As indicated in Section 7.0, the column rays through the front dipping planes can be displayed so one
can obtain a feeling for whether more resolution is needed. Some numerical details of the calculation
are available through the /*fmnfofumagecalc menu option. For example, this prints out the total intensity
in the viewing window

t - M d(ab) da db= f(x,y,z) da db dc = volume sum

The units for the column density calculation can be modified with the /m3fimage units menu option.
The units options assume the input grid node data f(x,y•z) is in units of # events/cm&-ec. These are the
units for reaction rate which are output from SOCRATES. In this case, the natural units for column
density are # events/cm 2/sec, since the integration over c cancels out one power of length. Other units
are available. For example, in order to convert to units of watts/cm2/sr one needs to multiply by the
energy emitted per event, de, and divide by 4nt for solid angle. Assuming one photon is released per
event de - h(cA) where I is the photon wavelength, which can be set with the mouse.

If the units are different than the above, there is an arbitrary scale factor available to convert the data
to any set of units.

18

REFERENCES

Elgin, J. B., "User's Manual for the SOCRATES Monte Carlo Contamination Model", GL-TR-88-0303,
1988. ADA205181

ilJ. L, Cooke, D., Jongeward, G., and Katz, I., "POLAR User's Manual", GL-TR-89-0307, 1989.
AD22103

National Optical Astronomy Observatories (NOAO), "IRAF User Handbook, Vol. 1B, Version 2.5,1987.

Tautz, M. F., Cooke, D. C, Rubin, A. G., and Yates, G. K., "Preliminary Documentation of the MACH
Code", GL-TR.-88-035, 1988. DA198956

19

APPENDIX A. COLOR MAPS AND THE COLOR LEGEND

The colors for the IRIS can be indexed to a color map in the range 0 to 1023. The programmer can
build his own map and that will become the system map until someone rebuilds it. If the system crashes,
the color map is often corrupted and the color map has to be rebuilt. To display the current color map,
toggle '/m3color.map/showjmap'. The color maps available are:

1) the normal map - this map mixes blue with green and green with red to produce a
'rainbow' of colors

2) a shade map - this map has a rainbow with bands of color mixed from black towards
white. It can be used with the depth cueing option.

3) a grey map - this map runs from black towards white. Used for black and white hard
copy.

4) a sawtooth grey map - this map runs between black and white in an approximate
sawtooth pattern. Used for special lighting effects.

5) a color band map. Test map with different bands of solid color.

The color map works with the legend to relate color to value. IRMA contains options to modify this
relation. The white rectangular box drawn on the IRMA color map depicts the boundaries of the
mapping function for the legend i.e. data values are mapped into successive rows starting at the lower
left corner and ending with the upper right corner of the box. The shape of the box can be changed
with the /m3/color.map/colorjange and /m3/color.map//shade range options. The former changes the
vertical boundaries of the box and the latter the horizontal boundaries. One can also modify the legend
lower and upper data limits and the number of intervals using the /m3/colormap/datajrange option.

If the legend is changed, previously colored objects may need to be selectively redrawn (using
/m3/*re-draw).

If one toggles the log/linear switch, the legend should reflect this change. This switch does not currently
work with nested multi-grids.

On the INDIGO, the legend can be displayed vertically using /toggles/legendhor/ver.

A-1

APPENDIX B. TEXT PORTS

Suppose one has set up an acceptable view and is ready to produce a hard copy. At this point it may
be desirable to add an informative caption of some kind. In IRMA one can do this by opening the text
port. There are two main types of text port:

1) the primary text port - this port is opened within the main display window, at the top.
To enter it, type 't' on the keyboard. The textport box should then appear on the screen
at the top of the display window. The keyboard is automatically set to text input mode.
This should be indicated in the upper right corner box (in set up mode).

2) the secondary (information) port - this port opens a new window. Thus, it can be
located anywhere on the screen and be of arbitrary size. Otherwise it is similar to the
primary port. There is some added flexibility in that an interior box for outlining text
can be defined. Use his port when there is a lot of elaborate information to be
displayed. To enter it, type 'i'. The port window opens up over the display window and
is in text input mode.

When in the text input mode, a small blue cursor will be visible within the text port window. Any keys
that are struck will type directly into the text port to the left of the cursor. There is a primitive editor
in IRMA that allows one to modify the text port. The cursor can be moved by means of the arrow keys
or with the backspace key and the space bar. To exit the text input mode, type 'escape'.

The text ports can be modified using the formatting module (5). Things that can be modified are listed
below:

a) The text port can be repositioned on the screen

b) The size of the port can be reduced or expanded either horizontally or vertically.

c) The text, border and background colors can be changed.

d) The number of lines within the port can be modified. Up to 30 lines are allowed. Line
markers can be inserted.

e) Text may be shifted horizontally within the port.

Text port information is saved on the IRMA parameter file and so can be recovered later.

There also exists a one line text port which allows one to insert captions above the color legend. This
can be used to specify special sets of units. Type 'u' to enter this port. The cursor works here and the
line can be edited.

The text ports can be turned on and off from the toggles menu.

B-1

APPENDIX C. DATA SCANS

It is possible in IRMA to inspect selected node data points from within the graphics modules. This
option can be used to help clarify the situation, if the graphics output doesn't look quite right. There
are currently three ways to do this:

1) toggle /*/info/coordinates - this will list the current grid coordinates and the data values
at the listed points.

2) toggle /*/info/probe - This function uses '/m3/set nodes' to vary the position of a small
probe (a parallelepiped) that appears on the screen. For example, set grid node indexes
i,j,k to values within the grid range, to specify a point at location x(i), y(j), z(k). The
color of the probe will correspond to the data value at the node. The size of the probe
is that of a half-width cell, centered on the node. The data value and the corresponding
color index at the node is printed in the information box at the left (in set up mode).

3) toggle /*/info/grid scan - This brings up a one dimensional line profile through the data.
Use '/m3/set nodes' to pick the desired scan line. This is done be setting to zero the
node index of the 'floating' dimension to be scanned. For example, to see the data as
a function of y, with x and z held fixed, set the y coordinate index j - 0 and the x and
z indexes i,k to fixed values so that the coordinates x(i), z(k) lie within the grid
boundaries.

By means of these scan options it is possible to look at any point in the grid.

A quick way to obtain a 'global' view of the data is to build the grid as an colored object using
/m3/*_create..rids. Each node will then be represented by a color coded dot with the color
corresponding to the local node value.

C-1

APPENDIX D. MULTI-GRIDS

Multi-grid data can be of two types.

1) Data for two different variables existing on two independent grids.

2) Data for the same variable existing on one or more nested grids.

In order to handle both types of data we have implemented a flexible system, where one can display the
grids separately or one can nest them.

a) For independent grids (case 1 above) the /m3/select grid option can be used to select one
grid as the current grid. All subsequent object creation will then be based on that grid
variable.

b) For true multi-grids (case 2 above) that require nesting, use the /m3/selectgrid option
to choose any combination of grids. Then toggle on the /m3/defmnenest menu entry.
This will create a nesting function so that any objects that are subsequently created are
nested with respect to all grids selected on. One can enable or disable the nesting
function with the '/m3/select..grid/nest on/off toggle. Nested grids can be viewed by using
the '/m3/*creategridnodes' option. If the input nested grids do not align on the
boundaries, it is possible to pad out (with linear interpolates) the inner grids so that they
fit together with no gaps.

The nesting function works as follows. The selected grids are looped through, starting with the lowest
grid. At each node a test is made to determine: what is the highest grid that contains this node. This
number defines a nesting function for each grid. In subsequent graphics creation options (for
clouds,slices,levels, etc.), the grids are again looped over and the nesting function is used at each node
- if the nesting function is not equal to the current grid, then the drawing action is skipped. In this way
the volume of the computational grid is partitioned in such a way that in any cell the highest level grid
is always used. Note that this algorithm will only work the nested grids are read in sequence from
course (lowest grid number) to fine (highest number). If two nested grids have the same resolution and
they overlap, the one with the higher grid number will predominate in the shared region.

This section is still in development.

D-1

APPENDIX E. ZBUFFER

When IRMA draws polygonal objects it normally starts with the first polygon in the list and draws them
in order. If the first polygon is in the background (i.e. furthest from the observer) this causes no
problem. But if the first polygon in the list is in the foreground, then it can subsequently get drawn over
by polygons behind it, leading to a confusing picture where the true orientation and structure of the
object may be obscured. This problem can be fixed by using the Silicon Graphics ZBUFFER option,
which enables one to shadow out hidden surfaces. It works by testing the z coordinate of each pixel and
only drawing the pixel with the z value nearest to the observer.

On the 3030 workstation the zbuffer process is slow and is not done continuously. In IRMA there is
a /toggles/zbuffer switch that can be used to zbuffer any fixed view. The screen remains in the zbufred
state until the next event in the queue is encountered (This could be a mouse click or any keyboard
event). The screen then reverts back to normal. Note that one must be in display mode in order fDr
the zbuffer option to work (only one window can be open). The zbuffer switch can also be activated
from the keyboard by typing a 'd' to go to display mode and a 'z' to turn on the zbuffer. On the
INDIGO, zbuffer can be on continuously.

The zbuffer option does not represent lines embedded in a polygon surface toperly (the 'decal' problem)
because it cannot distinguish between two pixels with the same z value. Thus any lines lying right on
a surface can tend to look fragmented. To work around this problem we have added an option to IRMA
(accessed from /m3/modify/split-wirejframe) to split the wire frame outline of each polygon surface so
that two frames are drawn, each displaced plus and minus epsilon (user specified) along the normal to
the polygon. This separates slightly the z coordinate of the wire frame lines from that of the surface
polygon and makes the lines more visible during zbuffering.

The depth cueing option switch in IRMA is subject to the same constraints as zbuffer. It maps color
with z depth and can be used with the shade map to make near lines appear brighter and far lines to
have decreased intensity. This option has not been used much.

E-1

APPENDIX F. PROGRAMMING NOTES

The IRMA program consists of a mixture of C and fortran coding. There are approximately 25K fines
of source code, of which 60% is in FORTRAN. Assembly language wrappers provide entry point
interfaces for FORTRAN-C calls. The main program is in FORTRAN and most of the graphics code
is in C The code uses the Silicon graphics multiple windowing capability (mex on the IRIS 303, 4Dwm
oa the INDIGO) to manage up to 10 windows. The executable file 'irma' is located in directory /lrma
along with many sample input files. The directory /irma has a number of subdirectories. This directory
tree contains all the code needed to compile and link IRMA.

The source routines and object files are located in subdirectory /src. To update the excutable, type
'make' in this directory. This will automatically remake the wrappers and files with modified include.
The linker references two archive libraries:

1) /npltools - this contains routines needed to use the MSIO files, borrowed from NPLDIS
program.

2) /mextools - this contains SI image tools needed to do screen dumps and to manipulate the
image files that are produced.

The include files are in subdirectory finc. The file irmas.h contains important size parameters. The
grap.h and grap ext.h files hold the C commons variables. Some of the other .h are SI system files, put
here so that IRMA is self-contained (except for one proprietary file get.h).

The FORTRAN to C (C2c) and C to FORTRAN (c2f) wrapper scripts are in subdirectory /wrapper. To
remake a wrapper by hand type:

.Jwrapper/wrapfc name (for FORTRAN TO C)

../wrapperwrapcf name (for C to FORTRAN)

Here 'name' is the source file name without extension. Normally you don't have to do this (make does
it all). However, the construction of the wrapper files is described by these scripts. There are examples
for both c2f and f2c wrappers in /src. A 'Qc' routine will be recognized by its having three files: name.c,
name.o, and name.fc. A 'c2f routine will also have three files: name.f, name.o and name.cL

The help files are in subdirectory /help.

The source code for constructing utilities for handling MSIO files are in subdirectory hmstools.

The preliminary INDIGO version of IRMA is functionally the same as the IRIS 3030 version. The
main differences are summarized below.

1) The wrapper routines are done differently. The FORTRAN to C routines are handled the
same, but the C to FORTRAN wrappers are changed. To call a FORTRAN routine from C;
you append an underscore to the routine name and all arguments are passed by reference (by
placing an ampersand in front of each argument)

F-1

2) You no longer have to be in display mode to turn on the z buffer. And the z buffer works
while an object is being moved, instead of toggling off immediately with the detection of any
queue event

3) The windows are much more flexible, since they can be moved and resized using the 4Dwm
control bar menus. The display mode is still active, but it simply clears away the status and slider
bar windows and does not modify the display window.

4) There is a test 'zrgb' option in the toggles menu which enables one to enter a graphics state
that is double buffered, z buffered and is in rgb color mode. This option will not be supported
on all machines. To exit this mode, hit the 'escape' key.

5) There is an enhanced Makefile in directory firma. Type 'make' in this directory and all
required source files will be compiled and linked, including the external libraries.

6) The SOCRATES binary files (RST can be read from within irma. The source code for
this option is in directory /socplot.

F-2

APPENDIX G. SAMPLE PLOTS

The following plots give a sample of the IRMA capabilities.

Plot 1 (Figure 1): The IRMA set up mode configuration.

Plot 2 (Figure 2): The POLAR code model of the DMSP satellite.

Plot 3 (Figure 3): The integrated column density for a SOCRATES simulation of a perpendicular
burn of the RCS engines.

Plot 4 (Figure 4): The POLAR code depiction of the plasma sheath around the SPEAR rodmt
The curved line represents an electron trajectory.

G-1

* 0

* U

U

C

U

U

2
U

2

2

0

0
U

2
0.

I

* I

G-2

U

8
a

*

S
U
ow
Cd,

0

2

2

I

G-3

0
t)

U

0

E
0

0

0

0
0
0

0
0

I
8
0
S..
0

0
U

*0
0
E
0
8

0

4)

I

G-4

I

--5

